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J. Maelger, M. Peláez, U. Reinosa, J. Serreau, M. Tissier,
A. Tresmontant, N. Wschebor

Paris, January 2018

How much nonperturbative ...



Quantum chromodynamics: energy scales

Typical QCD scale of the order of the proton mass ∼ 1 GeV.
At high energies (“perturbative regime”): typical energy involved
in the process is much larger than 1 GeV,
eg, collisions at LHC.
Use perturbation theory
At low energies (“nonperturbative regime”): typical energy of the
order of 1 GeV.
eg, Hadron spectrum, confinement criteria (Wilson loop),
confinement-deconfinement phase transition, etc... As a
benchmark: correlation functions.
Use Lattice simulations, Schwinger-Dyson equations,
functional/nonperturbative RG, ...
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Gauge fixing for QCD I

Yang-Mills theory described by Lagrangian density (in euclidean
space)

LYM =
1

4
F a
µν
F a
µν

with F a
µν

= ∂µA
a
ν
− ∂νA

a
µ
+ gf abcAb

µ
Ac
ν

Necessary to fix the gauge (AU = UAU† + i
g
U∂U†).

A

Equivalent configs AU
µ

Field configs satisfying
gauge cond. (∂µA

U
µ = 0)

How much nonperturbative ...



Gauge fixing for QCD II

With Faddeev-Popov construction, can be done at the
expense of introducing auxiliary fields: ghost (c , c̄) and
Lagrange multiplyer (h).

For the Landau gauge ∂µA
a
µ
= 0,

LFP = ∂µc̄
a(Dµc)

a + ha∂µA
a
µ

The functional integral is limited to the gauge condition and
the gauge group is factorized.
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However... I

The situation looks more like that:

A

Gribov copies
Gauge condition

equivalent configs

With a huge number of Gribov copies (for large lattices).
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However... II

In the presence of Gribov copies, the Faddeev-Popov
construction sums over all copies, with alternating signs.

There are as many pluses as minuses (topological constraint).

All physical observables appear as 0/0 ratio (Neuberger’s zero
problem).

Faddeev-Popov construction is not well-defined at a
nonperturbative level.

Gribov ambiguity has no influence at short distance. Up to
now, we do not have a fully satisfactory starting point to
describe analytically the infrared regime of QCD.

We have to be cautious about the predictions of
Faddeev-Popov in the infrared!
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However... III

Input from lattice data.

In lattice simulations, no need to fix the gauge, but can be
implemented.

The extrema of F [A,U] =
∫

Tr AU
µ
AU
µ
satisfy ∂µA

U
µ
= 0.

Gribov copies

F [A,U]

U

Bona fide gauge fixing. But it is not the Faddeev-Popov
construction.
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However... IV

Lattice data for the coupling (Sternbeck et al ’05), extracted from
ghost-gluon vertex (Beware that the coupling constant is not
universal at low energies.):
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The expansion parameter is Nα/(4π). Not so large.
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However... V

Gluon propagator is massive (Sternbeck et al ’07)!
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Hardly compatible with the Faddeev-Popov action (BRST symmetry

+ analyticity of correlation functions prevent this mass term).
Possible interpretation: Lattice data are indeed not described by
the Faddeev-Popov action (beware, everybody would not agree
with this interpretation).
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Curci-Ferrari model I

Idea: Put the gluon mass by hand in the gauge-fixed bare action.

L =
1

4
(F a

µν
)2 + ∂µc̄

ac(Dµc)
a + ha∂µA

a
µ
+

1

2
m2(Aa

µ
)

We think of the mass term as an effective way of taking into
account the Gribov copies.
Cons:

We do not have a clean procedure to generate this mass.

As a consequence, one more parameter in the theory...

BRST symmetry is explicitely broken.

Therefore the usual construction of the physical space does
not apply (Ojima ’82).
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Curci-Ferrari model II

Pros:

BRST symmetry is softly broken. The theory is renormalizable
(De Boer et al, ’95). (There is a modified BRST symmetry, which is however not nilpotent.)

Note that the mass term is added to the gauge-fixed action.

Feynman rules are identical to usual ones, except for the
massive gluon propagator:

〈AµAν〉0(p) =
(

δµν −
pµpν

p2

)

1

p2 +m2

Mass term regularizes the IR behavior of the theory (all
diagrams are IR finite for non-exceptional momenta).

Mass term does not modify the UV behavior. All UV
properties of Yang-Mills theory are recovered.

Ghosts remain massless. The compensation between gluon
and ghost loops is only partial in the IR.

How much nonperturbative ...



One-loop gluon and ghost propagators

Need to compute 4 Feynman diagrams

Define 〈AµAν〉(p) =
(

δµν − pµpν
p2

)

G (p) 〈cc̄〉(p) = 1
p2
F (p).

Introduce 4 renormaization parameters and you get (s = p2/m2.):

G−1(p)/m2 = s + 1 +
g2N

384π2
s
{

111s−1 − 2s−2 + (2− s2) log s

+ (4s−1 + 1)3/2
(

s2 − 20s + 12
)

log

(
√
4 + s −√

s√
4 + s +

√
s

)

+ 2(s−1 + 1)3
(

s2 − 10s + 1
)

log(1 + s)− (s → µ2/m2)
}

,

F−1(p) = 1 +
g2N

64π2

{

− s log s + (s + 1)3s−2 log(s + 1)− s−1 − (s → µ2/m2)
}

,
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Comparison with lattice data

For SU(2) (Cucchieri et al ’08)
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Renormalization-group flow

From renormalization factors, deduce a set of coupled β functions
for g and m:

In the UV (µ ≫ m) βg ≃ − g3N

16π2
11
3

In the IR (µ ≪ m) βg ≃ + g3N

16π2
1
6

Moreover, there is an IR supression due to the coupling of the
ghosts through massive gluons.
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Similarly, gluon mass tends to 0 at high energy.
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The phase diagram of QCD I

In heavy ion collisions, and core of neutron stars, matter reaches
extreme conditions, with temperatures of the order of ∼ 1012 K,
densities of ∼ 1018 kg/m3.
Typical values for strong interactions. In strong interactions units:
T ∼ 1 GeV, ρ ≃ 1 GeV/fm3.
In the quenched approximation (no dynamic quarks), lattice
simulations clearly show a phase transition at a temperature
∼ 250 MeV, which is in the nonperturbative regime.
Extension to finite chemical potential is intricate. Lattice
simulation are hard!
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Phase diagram of QCD II

Describe the confinment/deconfinement transition in terms of a
potential. If the minimum lies at π: confining phase (Polyakov
loop vanishes).
At high temperatures (red), V → F0(βgĀ).
At low temperatures (blue), V → −1

2F0(βgĀ).
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The leading order approximation captures the good physics!
Was extended to take into account the chemical potential, to next
order at µ = 0 ...
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Conclusions

Curci-Ferrari seems to capture many “nonperturbative”
properties of QCD within perturbation theory.

This would mean that the major nonperturbative ingredient is
the gluon mass.

We have a nice model to study low-energy properties of QCD.
Tested in several situations.

Can control chiral symmetry breaking along similar lines.

Wilson loop?
Two-loop calculations for the propagators?
Transport coefficients?
...

Can we generate the mass from first principles (relation with
problems with disorder in stat. phys.)?

Can we build a physical subspace?
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